A Dynamic Approach to Monitoring Particle Fallout in a Cleanroom Environment

RADFORD L. PERRY III STINGER GHAFFARIAN TECHNOLOGIES, INC

OPTICAL SYSTEM CONTAMINATION: EFFECTS, MEASUREMENTS, AND CONTROL 2010 SAN DIEGO CONVENTION CENTER

Introduction

- □ Particle fallout levels are commonly used for:
 - **±** Estimating the effects of environmental exposure of sensitive surfaces
 - **b** Development of contamination budgets
- □ Standard fallout measurement approaches require durations inversely proportional to the environmental cleanliness
- Cleanrooms are certified according to airborne particle count, and many cleanrooms are equipped with continuous monitoring
- ☐ The ability to estimate particle fallout based on airborne particle counts provides a more dynamic approach

Assumptions

- Fallout rates are directly proportional to air quality
- Rates and quality directly reflect activity levels
- Once settled, particles remain
- Accumulation surfaces are horizontal

Simple Approach

 Previous studies correlated cleanliness class to cleanliness level

- Cleanliness level is sensitive to particle distributions
 - MIL-STD 1246 (IEST-STD-CC-1246) cleanliness levels use -0.926 distribution slope
 - Airborne particle distribution follows a -0.28 slope
 - Distribution of particle fallout is -0.383
- Results in non-linear relationship

- Correlation to a normalized area coverage (e.g. PAC) provides a linear time relationship
- ☐ Simple substitution remains nonlinear for cleanroom class

Theoretical Components of Theoretical Compon

Airborne Particle Distribution (FED-STD-209)

$$n_x = Class * \left(\frac{0.5}{x}\right)^{2.2}$$

Effective Column Height (Stokes Coefficient)

$$v = \frac{2 * g * r^2 * (d_1 - d_2)}{9\mu}$$

 $v = \frac{2 * g * r^2 * (d_1 - d_2)}{9\mu}$ Caveat: Limit column height by ceiling height and air exchanges

Obscuration Factor

$$OF = \left(\frac{x}{AR}\right)^2 * \left(\frac{\pi}{4} + AR - 1\right)$$

Particle Size (microns)	Aspect Ratio (L:W)
1 - 69	X 0.1088
70 - 175	X ^{0.8804} /26.53
176 - 346	X ^{2.589} /181500
> 346	X ^{0.8964} /9.138

Adapted from Ma, Fong, and Lee, SPIE 1165 (1989)

Putting It All Together Option

 □ Combination of distribution, column height, and obscuration factor provides a linear correlation of area coverage (AC) to cleanroom class and time (Class-Hours)

$$AC_{x} = \left[\frac{n_{x+1} - n_{x}}{Class}\right] * \left[v_{\bullet F}\right]^{*} \frac{3600 \, s}{hr} * \frac{ft}{30.48 \, cm}\right] * \left[OF * \frac{1.076 \, x 10^{-11} \, ft^{2}}{\mu m^{2}}\right]$$

□ A spreadsheet was used to determine the incremental contribution of AC for particles in 1 micron bins from 1 to 1000 microns

Numerical Results

For ISO 14644-1:
$$n_x = 10^{Class} * \left(\frac{0.1}{x}\right)^{2.08}$$
 therefore AC = 4.7x10⁻¹⁴(ht)^{0.81}/C-H

How To Make It Work

□ Predictive:

- ± Assume a limit of 0.1 PAC in a facility with a 100 foot ceiling, this results in 2.2x10⁶ Class-Hours
 - □ For a Class 10K facility: 220 hours
 - ☐ For one month duration: Class 3000
- Assume covering off-shift (2/3 of each day)
 - ☐ For a Class 10K facility: 660 hours
 - For one month duration: Class 9000

□ Dynamic:

- Cleanroom environments are rarely static, but vary with activity level
- Airborne particle counters can provide real-time data

Application

□ Hourly monitoring sums to 5.15x10⁵ Class-Hours (>75% margin)

Supporting Evidence

- Ongoing monitoring at GSFC SSDIF
 - Estimated AC/C-H (100 ft ceiling): 4.5x10⁻¹⁰
 - {Estimated AC/C-H (43 exchanges/hr): 5.9x10⁻⁹}
 - Measured AC/C-H (5 μ m channel): 4.9(±8.0)x10⁻¹⁰
 - \circ {Measured AC/C-H (0.5 μ m channel): 4.6(±9.2)x10⁻⁹}
- Hamburg data: 9.3x10⁻¹⁰ AC/C-H

Acknowledgements

- Kristen McKittrick Image Analysis
- Colette LePage Particle Counter data
- James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)